CHROM. 25 032

## Short Communication

# Improved enantiomeric separation with a 2,6-di-Opentyl-3-O-trifluoroacetylated $\beta$ -cyclodextrin and OV-7 mixed stationary phase chiral capillary column

Hong Wan, Yi Wang, Qingyu Ou\* and Weile Yu

Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000 (China)

(First received November 9th, 1992; revised manuscript received March 1st, 1993)

#### ABSTRACT

2,6-Di-O-pentyl-3-O-trifluoroacetylated  $\beta$ -cyclodextrin (DP-TFA- $\beta$ -CD) as a chiral stationary phase was synthesized and characterized by two-dimensional NMR spectrometry. A chiral fused-silica capillary column prepared by using a mixed stationary phase of DP-TFA- $\beta$ -CD and OV-7 possesses a high column efficiency of >4100 plates/m and displays better thermal stability than a column coated with DP-TFA- $\beta$ -CD alone. Enantiomers such as alcohols, diols,  $\gamma$ -lactones and amines could be separated in relatively short time.

#### INTRODUCTION

Cyclodextrin (CD) derivatives as chiral stationary phases (CSPs) for the gas chromatographic (GC) separation of enantiomers have attracted interest in recent years. Much progress has been made since Juvancz *et al.* [1] used permethylated  $\beta$ -CD for separating some optical isomers on glass capillary columns in 1987, and Konig and co-workers [2,3] introduced hydrophobic groups into CDs in 1988. Since then, a variety of derivatized  $\alpha$ -,  $\beta$ -, and  $\gamma$ -cyclodextrin CSPs have been synthesized [4–10] and used in GC separations of chiral components in foods and beverages [11], essential oils [12], petroleum

and coal [13]. Permethylated  $\beta$ -CD and dipentyl acetylated- $\beta$ -CD have been used extensively. Owing to their high melting points, permethylated CDs are usually dissolved in polysiloxanes such as OV-1701 to obtain a high column efficiency [14]. Schmarr et al. [15] showed that the diluted cyclodextrin derivatives decreased the enantioselectivity for enantiomers. Keim et al. [10] demonstrated however, that in some instances, the dilution could improve the physical properties of cyclodextrin derivatives even for these viscous fluids by dissolving them in a polysiloxane liquid phase. Li et al. [9] demonstrated the high enantioselectivity of dipentyl trifluoroacetylated cyclodextrin for a number of enantiomers, but the thermal stability of column was below 180°C.

In this work, 2,6-di-O-pentyl-3-O-trifluoro-

<sup>\*</sup> Corresponding author.

acetylated  $\beta$ -CD(DP-TFA- $\beta$ -CD) was synthesized and characterized by two-dimensional NMR. The enantioselectivity and thermal stability of a chiral column coated with a mixed stationary phase of DP-TFA- $\beta$ -CD and conventional OV-7 were examined.

#### EXPERIMENTAL

#### Synthesis of 2,6-di-O-pentyl-3-O-trifluoroacetylated- $\beta$ -CD

A 5.6-g (5-mmol) amount of dry  $\beta$ -CD was dissolved in 100 ml of dry dimethyl sulphoxide and 8 g (20 mmol) of pulverized NaOH and 30 ml of 1-bromopentane were added. The mixture was stirred at room temperature for 5 days, then poured into water and extracted three times with chloroform. The organic layer was washed with water until neutral and dried over Na<sub>2</sub>SO<sub>4</sub>. After evaporating the solvent, the product was dried at 60°C for 8 h under vacuum and further purified by gel chromatography, giving 9.3 g of 2,6-di-O-pentyl- $\beta$ -CD (DP- $\beta$ -CD) with a yield of 88%. Elemental analysis gave C 63.44, H 9.66; required for (C<sub>16</sub>H<sub>30</sub>O<sub>5</sub>)<sub>7</sub>, C, 63.54, H 10.00%.

A 4-g amount of DP- $\beta$ -CD was dissolved in 80 ml dry tetrahydrofuran, a fivefold excess of trifluoroacetic anhydride was added and the mixture was refluxed for 8 h, then poured over ice to precipitate the product. The product was extracted with diisopropyl ether and washed with 5% aqueous NaHCO<sub>3</sub> and water. The organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and concentrated by evaporation of the solvent. The raw product was dried at 50°C for 6 h under vacuum, purified by gel chromatography and a viscous liquid of DP-TFA- $\beta$ -CD was obtained with a yield of 82%;  $R_f = 0.56$  [*n*-hexane-diisopropyl ether (4:6)]. Elemental analysis gave C 49.25, H 6.64;  $(C_{18}H_{29}O_6F_3)_7$  requires C 54.26, H 7.34%.  $[\alpha]_{D}^{\overline{21}} = +42.5$  (c 0.41, CHCl<sub>3</sub>). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>)  $\delta$  (ppm) 0.81–0.98 (m, 6H,H-5'), 1.10-1.94 (m,12H, H-2', H-3', H-4'), 3.30-4.48 (m,4H,H-1'), 3.30-4.48 (m, 5H, H-2, H-4, H-5,H-6), 5.01 (d,1H, $^{3}J$  = 3.4 Hz, H-1), 5.37 (m, 1H, H-3). <sup>13</sup>C-NMR (100 Hz, CDCl<sub>3</sub>),  $\delta$ (ppm) 13.80, 13.96 (C-5'), 22.35, 22.48 (C-4'), 24.49, 25.19, 25.75 (C-3'), 27.61, 28.36, 29.00, 29.34 (C-2'), 67.19, 68.02, 69.98, 71.69, 71.91 (C-1'), 68.92 (C-6), 71.25 (C-5), 76.69 (C-4),

76.18 (C-3), 77.72 (C-2), 98.78 (C-1), 114.48, 114.55, 114.68 (dd, C-2",  $J_{C-F} = 285.3$  Hz), 1550.03, 157.40, 157.71 (dd, C-1",  ${}^{2}J_{C-F} = 42.7$  Hz).

#### Preparation of chiral capillary columns

A 38 m×0.26 mm I.D. glass capillary tube was first coated with a layer of Celite 545 by the organic gel method, then deactivated with DPTMDS-HMDS (1:2, v/v)<sup>*a*</sup> at 400°C for 12 h. The pretreated glass capillary tube was coated with a 3% solution of DP-TFA- $\beta$ -CD in diisopropyl ether by a superdynamic method as described [16].

A 40 m × 0.26 mm I.D. fused-silica capillary tube was coated as above by using a 3% solution of a mixed stationary phase of DP-TFA- $\beta$ -CD and OV-7 (2:1, w/w) in diisopropyl ether after it had been heated at 280°C for 2 h under a flow of nitrogen. It took only 1 h to coat the column. The finished columns showed a high column efficiency of above 4100 plates/m at 140°C using *n*-dodecane as the test solute.

#### Instrumentation

All chromatographic measurements were performed on a Model 1001 gas chromatograph (Shanghai Analytical Instrumentation Factory), equipped with a flame ionization detector and an HP-3390A integrator. High-purity nitrogen was used as the carrier gas at a velocity of *ca*. 25 cm/s, with a splitting ratio of 1:60.

#### Racemates

Most of the volatile racemates were commercial products. Some diols and amines were synthesized by Dr. Zhao Jun of this Institute. All compounds containing hydroxyl and/or amine functional groups were converted into their trifluoroacetyl derivatives before chromatographic analysis.

#### **RESULTS AND DISCUSSION**

Some peralkylated cyclodextrins have been characterized by NMR spectrometry [10,17], but

<sup>&</sup>lt;sup>a</sup> DPTMDS = 1,3 - diphenyl - 1,1,3,3 - tetramethyldisilane, HMDS = hexamethyldisilane.

#### TABLE I

### $\alpha$ , $k'_1$ AND $R_s$ VALUES FOR SOME ENANTIOMERS

| Racemate                  | Structure                                     | Temperature (°C) | α     | k'1  | R <sub>s</sub> |  |
|---------------------------|-----------------------------------------------|------------------|-------|------|----------------|--|
| 2-Bromobutane             | Br                                            | 40               | 1.078 | 2.14 | 1.12           |  |
| 2-Bromopentane            | Br                                            | 40               | 1.030 | 3.96 | 0.88           |  |
| 2-Bromoheptane            | Br                                            | 80               | 1.039 | 2.40 | 2.45           |  |
| 2-Bromooctane             | Br                                            | 80               | 1.040 | 5.00 | 2.58           |  |
| 2-Chloroheptane           | ~~~~                                          | 60               | 1.058 | 1.63 | 2.31           |  |
| 2-Chlorooctane            | a<br>~~~~~                                    | 60               | 1.052 | 4.34 | 1.97           |  |
| Epichlorhydrin            | Å∕\ci                                         | 70               | 1.260 | 1.47 | 3.89           |  |
| $\gamma$ -Heptalactone    | € <sup>1</sup>                                | 140              | 1.282 | 1.92 | 7.42           |  |
| γ-Undecalactone           | Снэсн,                                        | 170              | 1.043 | 4.48 | 2.09           |  |
| 2-Butanol                 | OH                                            | 40               | 1.302 | 0.42 | 4.24           |  |
| 2-Pentanol                | он                                            | 40               | 1.290 | 0.88 | 6.85           |  |
| 2-Heptanol                | он                                            | 50               | 1.270 | 3.51 | 11.6           |  |
| 2-Octanol                 | он                                            | 80               | 1.180 | 2.51 | 7.18           |  |
| 3-Methyl-2-Butanol        | он<br>Хү                                      | 40               | 1.243 | 0.81 | 4.42           |  |
| 2-Methyl-3-Butanol        |                                               | 40               | 1.023 | 3.26 | 0.81           |  |
| 1,2-Propanediol           | он                                            | 60               | 1.290 | 3.40 | 9.02           |  |
| 2,3-Butanediol            |                                               | 60               | 1.964 | 1.52 | 20.6           |  |
| 1,2,4-Butanetriol         | но он                                         | 130              | 1.071 | 2.48 | 1.53           |  |
| Methyl 2-Methylbutyrate   | √ c <sup>*0</sup> <sub>OCH</sub> <sub>,</sub> | 80               | 1.025 | 5.14 | 1.51           |  |
| Ethyl 2-hydroxypropionate | OH P<br>C OCH                                 | 70               | 1.074 | 2.42 | 1.80           |  |
| Methyl 2-aminobutyrate    |                                               | 140              | 1.178 | 1.76 | 10.1           |  |
| Methyl 2-aminoisobutyrate |                                               | 140              | 1.280 | 1.60 | 12.2           |  |
| 1-Phenylethanol           | Q)H                                           | 80               | 1.051 | 3.18 | 3.25           |  |

| Racemate                           | Structure | Temperature (°C) | α     | <b>k</b> ' <sub>1</sub> | <i>R</i> <sub>s</sub><br>2.77 |  |
|------------------------------------|-----------|------------------|-------|-------------------------|-------------------------------|--|
| 1-Phenylethylamine                 | NH,       | 125              | 1.042 | 3.32                    |                               |  |
| 1-Phenyl-2-propylamline            | NH,       | 125              | 1.036 | 5.81                    | 2.41                          |  |
| 2,4-Pentanediol                    | онон      | 90               | 1.110 | 1.57                    | 4.81                          |  |
| 2,5-Hexanediol                     | OH<br>OH  | 90               | 1.060 | 2.70                    | 2.43                          |  |
| 2-O-Acetylated propion<br>aldehyde | OAC<br>C  | 140              | 1.221 | 1.77                    | 8.55                          |  |
|                                    |           |                  |       |                         |                               |  |

TABLE I (continued)

no NMR or elemental analysis data have been reported for dipentylacetylated or trifluoroacetylated cyclodextrins, probably it was too difficult to obtain these derivatives in pure form. Our results with two-dimensional NMR with <sup>1</sup>H-<sup>1</sup>H COSY, <sup>1</sup>H-<sup>13</sup>C HETCOR and DEPT techniques showed that DP- $\beta$ -CD was relatively pure and its <sup>1</sup>H and <sup>13</sup>C NMR data were consistent with published data [18]. With DP-TFA- $\beta$ -CD we were puzzled at the fact that its elemental analysis data were much lower than the calculated values as no impurities were detected in DP-TFA- $\beta$ -CD by NMR spectrometry. Considering that the sample had beed carefully dried before analysis, the most likely explanation



Fig. 1. Enantiomer separation of trifluoroacetylated alcohols. Column temperature, 40°C held for 4 min, then programmed to 80°C at 3°C/min. would be inclusion of solvent. The enantiomeric separation data on the mixed stationary phase for some resolved compounds are given in Table I.

Figs. 1-4 illustrate some typical enantiomeric separations on a 40-m fused-silica capillary column coated with a mixed stationary phase of DP-TFA- $\beta$ -CD and OV-7, with nitrogen at 24 p.s.i. as the carrier gas.

Table II gives a comparative separation of four enantiomers with different functional groups using DP-TFA- $\beta$ -CD alone and a mixed stationary phase of DP-TFA- $\beta$ -CD and OV-7. A better enantiomeric separation was obtained with the



Fig. 2. Enantiomer separation of trifluoroacetylated amines. Colume temperature, 125°C.



Fig. 3. Enantiomer separation of 2-O-acetylated propion aldehyde. Column temperature 150°C.

mixed stationary phase at lower temperature and in a shorter time, and the enantioselectivity of the DP-TFA- $\beta$ -CD stationary phase was less affected when it was mixed with a small proportion of conventional polysiloxane OV-7.

Although Li *et al.* [9] found that DP-TFA- $\beta$ -CD wets an untreated fused-silica capillary wall, the film was unstable above 180° and the column efficiency decreased dramatically after it had been used above 200°C. In this work, using a



Fig. 4. Enantiomer separation of  $\gamma$ -lactones. Column temperature, programmed from 140 to 190°C at 2°C/min.

column coated with DP-TFA- $\beta$ -CD alone, we also observed apparent droplets of stationary phase on the capillary wall after raising the column temperature to above 180°. However by using the mixed stationary phase, an easily prepared column with high efficiency can be used continuously at 210°C for 4 h without a decrease in efficiency. We have used this fused-silica capillary column for 6 months with over 2000 injections with virtually no decrease in  $k'_1$ . These

#### TABLE II

ENANTIOMERIC SEPARATION DATA OBTAINED ON SINGLE AND MIXED STATIONARY PHASES

| Enantiomer         | Column                               |                    |       |      |                                             |                    |       |      |
|--------------------|--------------------------------------|--------------------|-------|------|---------------------------------------------|--------------------|-------|------|
|                    | DP-TFA-β-CD<br>(38 m × 0.26 mm I.D.) |                    |       |      | DP-TFA-β-CD + OV-7<br>(40 m × 0.26 mm I.D.) |                    |       |      |
|                    | Temperature (°C)                     | $t'_{\rm R}$ (min) | α     | R,   | Temperature (°C)                            | $t'_{\rm R}$ (min) | α     | R,   |
| QH<br>~~~~~        | 80                                   | 8.09               | 1.068 | 4.14 | 70                                          | 7.54               | 1.078 | 4.84 |
| CH.),CH,           | 180                                  | 15.1               | 1.043 | 1.91 | 170                                         | 12.6               | 1.043 | 2.09 |
| ©∕ <sup>NH</sup> , | 140                                  | 8.56               | 1.035 | 1.59 | 130                                         | 6.32               | 1.038 | 2.66 |
| Å~ci               | 90                                   | 3.84               | 1.190 | 6.49 | 80                                          | 2.77               | 1.200 | 6.91 |

results demonstrate that the thermal stability of the chiral column was improved considerably by mixing a polysiloxane with a viscous liquid cyclodextrin derivative.

#### ACKNOWLEDGEMENT

This work was supported by the National Natural Science Foundation of China.

#### REFERENCES

- 1 Z. Juvancz, G. Alexander and J. Szejtli, J. High Resolut. Chromatogr. Chromatogr. Commun., 10 (1987) 105.
- 2 W.A. Konig, S. Lutz and G. Wenz, Angew. Chem., Int. Ed. Engl., 27 (1988) 979.
- 3 W.A. Konig, S. Lutz, P. Mischnick-Lubbecke, B. Brassat and G. Wenz, J. Chromatogr., 447 (1988) 193.
- 4 W.A. Konig, S.Lutz, C. Colberg and N. Schmidt, J. High Resolut. Chromatogr. Chromatogr. Commun., 11 (1988) 621.
- 5 W.A. Konig, R. Krebber and P. Mischnick-Lubbecke, J. High Resolut. Chromatogr., 12 (1989) 732.

- 6 W.A. Konig, J. High Resolut. Chromatogr., 12 (1989) 790.
- 7 D.W. Armstrong, W. Li, C.-D. Chang and J. Pitha, Anal. Chem., 62 (1990) 914.
- 8 W.A. Konig, D. Ichtlef, T. Runge, I. Pforr and A. Krebs, J. High Resolut. Chromatogr., 13 (1990) 702.
- 9 Y. Li, H.-L. Jin and D.W. Armstrong, J. Chromatogr., 509 (1990) 303.
- 10 W. Keim, A. Konnes, W. Meltfzow and H. Romer, J. High Resolut. Chromatogr., 14 (1990) 507.
- 11 A. Mosandl, U. Plener, U. Hagerauer-Hener and A. Kusterman, J. High Resolut. Chromatogr., 12 (1989) 532.
- 12 W.A. Konig, R. Krebber, P. Evers and G. Brachn, J. High Resolut. Chromatogr., 13 (1990) 328.
- 13. D.W. Armstrong, Y.-B. Tang and J. Zukonski, Anal. Chem., 63 (1991) 2858.
- 14 H.-P. Nowotny, D. Schmalzing, D. Wistuba and V. Schurig, J. High Resolut. Chromatogr. Chromatogr. Commun., 12 (1988) 383.
- 15 H.-G. Schmarr, A. Mosandl, H.-P. Neukom and K. Grob, J. High Resolut. Chromatogr., 14 (1991) 207.
- 16 H. Wan and Q. Ou, Fenxi Huaxue, 20 (1992) 394.
- 17 G. Wenz, P. Mischnick-Lubbecke, R, Krebber, M. Richters and W. A. Konig, J. High Resolut. Chromatogr., 13 (1990) 724.
- 18 W. Meier-Augenstein, B.V. Burger and H.S.C. Spies, Magn. Reson. Chem., 29 (1991) 681.